skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Starke, Allen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. First responders and other tactical teams rely on mo- bile tactical networks to coordinate and accomplish emergent time- critical tasks. The information exchanged through these networks is vulnerable to various strategic cyber network attacks. Detecting and mitigating them is a challenging problem due to the volatile and mobile nature of an ad hoc environment. This paper proposes MalCAD, a graph machine learning-based framework for detecting cyber attacks in mobile tactical software-defined networks. Mal- CAD operates based on observing connectivity features among various nodes obtained using graph theory, instead of collecting information at each node. The MalCAD framework is based on the XGBOOST classification algorithm and is evaluated for lost versus wasted connectivity and random versus targeted cyber attacks. Results show that, while the initial cyber attacks create a loss of 30%–60% throughput, MalCAD results in a gain of average throughput by 25%–50%, demonstrating successful attack mitigation. 
    more » « less
  2. null (Ed.)
    In recent years, smart grid communications (SGC) has evolved to use new technologies not only for data delivery but also for enhanced smart grid (SG) security and reliability. Software Defined Networks (SDN) has proved to be a reliable and efficient architecture for handling diverse communication systems due to their ability to divide responsibilities of the network using control plane and data plane. This paper presents a graph learning approach for detecting and identifying Distributed Denial of Service (DDoS) attacks in SDN-SGC systems (GLASS). GLASS is a two phase framework that (1) detects if SDN-SGC is under DDoS attack using supervised graph deep learning and then (2) identifies the compromised entities using unsupervised learning methods. Network performance statistics are used for modeling SDN-SGC graphs, which train Graph Convolutional Neural Networks (GCN) to extract latent representations caused by DDoS attacks. Finally, spectral clustering is used to identify compromised entities. The experimental results, obtained by analysis of an IEEE 118-bus system, show the average throughput for compromised entities is able to maintain 84% of normal traffic level with GLASS, compared to achieving only 4% of normal throughput caused by DDoS attacks on compromised entities without the GLASS framework. 
    more » « less
  3. null (Ed.)
    Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience. 
    more » « less
  4. null (Ed.)
  5. In this paper, we propose a responsive autonomic and data-driven adaptive virtual networking framework (RAvN) to detect and mitigate anomalous network behavior. The proposed detection scheme detects both low rate and high rate denial of service (DoS) attacks using (1) a new Centroid-based clustering technique, (2) a proposed Intragroup variance technique for data features within network traffic (C.Intra) and (3) a multivariate Gaussian distribution model fitted to the constant changes in the IP addresses of the network. RAvN integrates the adaptive reconfigurable features of a popular SDN platform (open networking operating system (ONOS)); the network performance statistics provided by traffic monitoring tools (such as T-shark or sflow-RT); and the analytics and decision-making tools provided by new and current machine learning techniques. The decision making and execution components generate adaptive policy updates (i.e. anomalous mitigation solutions) on-the-fly to the ONOS SDN controller for updating network configurations and flows. In addition, we compare our anomaly detection schemes for detecting low rate and high rate DoS attacks versus a commonly used unsupervised machine learning technique, Kmeans. Kmeans recorded 72.38% accuracy, while the multivariate clustering and the Intra-group variance methods recorded 80.54% and 96.13% accuracy respectively, a significant performance improvement. 
    more » « less
  6. Abstract Smart Grid (SG) research and development has drawn much attention from academia, industry and government due to the great impact it will have on society, economics and the environment. Securing the SG is a considerably significant challenge due the increased dependency on communication networks to assist in physical process control, exposing them to various cyber‐threats. In addition to attacks that change measurement values using False Data Injection (FDI) techniques, attacks on the communication network may disrupt the power system's real‐time operation by intercepting messages, or by flooding the communication channels with unnecessary data. Addressing these attacks requires a cross‐layer approach. In this paper a cross‐layered strategy is presented, called Cross‐Layer Ensemble CorrDet with Adaptive Statistics(CECD‐AS), which integrates the detection of faulty SG measurement data as well as inconsistent network inter‐arrival times and transmission delays for more reliable and accurate anomaly detection and attack interpretation. Numerical results show that CECD‐AS can detect multiple False Data Injections, Denial of Service (DoS) and Man In The Middle (MITM) attacks with a high F1‐score compared to current approaches that only use SG measurement data for detection such as the traditional physics‐based State Estimation, ECD‐AS strategy and other machine learning classification‐based detection schemes. 
    more » « less